
Junior problems

J547. Find all primes p such that
2p+2 − 1

p

is prime.

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

Solution by Ashley Simone, SUNY Brockport
If

2p+2 − 1

p

is a prime number then
p∣2p+2 − 1

In particular, this implies that p is an odd prime. Then, by Fermat’s Theorem,

p∣2p−1 − 1

which implies that
p∣(2p+2 − 1) − (2p−1 − 1) = 2p+2 − 2p−1 = 7 ⋅ 2p−1

Since p is an odd prime, we conclude that p = 7. Therefore the only possible solution is p = 7. In this case

2p+2 − 1

p
=

29 − 1

7
= 73

which is a prime number.
Thus 7 is the only solution of this problem.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Taes Padhihary, Disha Delphi Public School, India;
Brian Bradie, Christopher Newport University, Newport News, VA, USA; Sebastian Fernandez, Costa Rican
Olympiad Team; Archisman Nandy, St.Agnes School-Kharagpur, India; Corneliu Mănescu-Avram, Ploieşti,
Romania; Ioan Viorel Codreanu, Satulung, Maramures, Romania; Henry Ricardo, Westchester Area Math
Circle; Ivko Dimitrić, Pennsylvania State University Fayette, PA, USA; Joel Schlosberg, Bayside, NY, USA;
David E. Manes, Oneonta, NY, USA; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania;
Polyahedra, Polk State College, USA; Fred Frederickson, Utah Valley University, UT, USA; Anderson Torres,
Brazil; Lazar Ilic; Grant Blitz, Glenview, IL, USA.
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J548. Let a, b, c, x, y be positive real numbers such that x + y = 1. Prove that
√

a3

xa + yb
+

√
b3

xb + yc
+

√
c3

xc + ya
≥ a + b + c.

Proposed by Mircea Becheanu, Canada

First solution by Henry Ricardo, Westchester Area Math Circle
We use the Cauchy-Schwarz inequality to see that

∑
cyc

√
a3

xa + yb
= ∑

cyc

¿
Á
ÁÀ a4

a(xa + yb)
= ∑

cyc

a2
√
a(xa + yb)

≥
(a + b + c)2

∑cyc

√
a(xa + yb)

≥ a + b + c ⇐⇒ ∑
cyc

√
a(xa + yb) ≤ a + b + c.

Applying the Cauchy-Schwarz inequality again, we have

∑
cyc

√
a(xa + yb) ≤

√
a + b + c ⋅

√
(x + y)(a + b + c) = a + b + c,

and we are finished. Equality holds if and only if a = b = c.

Second solution by Polyahedra, Polk State College, USA
Applying Jensen’s inequality to the convex function 1/

√
t, we get

a

a + b + c
⋅

1
√
x + yb/a

+
b

a + b + c
⋅

1
√
x + yc/b

+
c

a + b + c
⋅

1
√
x + ya/c

≥
1

√
ax + yb + bx + yc + cx + ya

a + b + c

= 1.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Taes Padhihary, Disha Delphi Public School, India;
Ace Kim, Northern Valley Regional High School at Old Tappan, NJ, USA; Corneliu Mănescu-Avram, Plo-
ieşti, Romania; Marin Chirciu, Colegiul Nat,ional Zinca Golescu, Pites,ti, Romania; Daniel Văcaru, Pites,ti,
Romania; Mihai Craciun, Mihail Sadoveanu National College, Pas,cani, Romania; Prodromos Fotiadis, Niki-
foros High School, Drama, Greece; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania; Arkady
Alt, San Jose, CA, USA.
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J549. Let a, b, c be positive real numbers. Prove that

b + c

a2
+
c + a

b2
+
a + b

c2
−

9

a + b + c
≥

1

a
+

1

b
+

1

c
.

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

First solution by Henry Ricardo, Westchester Area Math Circle
We use the result that x/y2 + y/x2 ≥ 1/x + 1/y for x, y > 0:

x

y2
+
y

x2
≥

1

x
+

1

y
⇐⇒

x3 + y3

x + y
≥ xy ⇐⇒ x2 − xy + y2 ≥ xy ⇐⇒ (x − y)2 ≥ 0.

Equality holds if and only if x = y.

Now

b + c

a2
+
c + a

b2
+
a + b

c2
= (

a

c2
+
c

a2
) + (

b

c2
+
c

b2
) + (

a

b2
+
b

a2
)

≥ (
1

c
+

1

a
) + (

1

c
+

1

b
) + (

1

b
+

1

a
) = 2(

1

a
+

1

b
+

1

c
) (1)

and

9

a + b + c
≤

1

a
+

1

b
+

1

c
, or −

9

a + b + c
≥ −(

1

a
+

1

b
+

1

c
) (2)

by the Harmonic Mean-Arithmetic Mean inequality.
Combining (1) and (2), we see that

b + c

a2
+
c + a

b2
+
a + b

c2
−

9

a + b + c
≥ 2(

1

a
+

1

b
+

1

c
) − (

1

a
+

1

b
+

1

c
) =

1

a
+

1

b
+

1

c
.

Equality holds if and only if a = b = c.
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Second solution by Henry Ricardo, Westchester Area Math Circle
The homogeneity of the inequality allows us to assume a + b + c = 1. Then the inequality becomes

1 − c

c2
+

1 − a

a2
+

1 − b

b2
− 9 ≥

1

a
+

1

b
+

1

c
.

The Harmonic Mean–Arithmetic Mean inequality gives us (a + b + c)(1/a + 1/b + 1/c) ≥ 9, or −9 ≥ −(1/a +
1/b + 1/c), so that our inequality becomes

1

a2
+

1

b2
+

1

c2
≥ 3(

1

a
+

1

b
+

1

c
) .

Now

(
1

a2
+

1

b2
+

1

c2
) =

1

2
∑
cyclic

(
1

a2
+

1

b2
) ≥

1

ab
+

1

bc
+

1

ca

≥ 3(
1

a
+

1

b
+

1

c
) ⇐⇒ a + b + c ≥ 3(ab + bc + ca).

Since Maclaurin’s inequality gives us (a + b + c)/3 ≥
√

(ab + bc + ca)/3, we have 1/3 ≥
√

(ab + bc + ca)/3, or
1 ≥ 3(ab + bc + ca), and we are done. Equality holds if and only if a = b = c.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Polyahedra, Polk State College, USA; Brian Bra-
die, Christopher Newport University, Newport News, VA, USA; Fred Frederickson, Utah Valley University,
UT, USA; Costa Rican Olympiad Team; Anderson Torres, Brazil; Alejandro Campos, Costa Rican Olym-
piad Team; Corneliu Mănescu-Avram, Ploieşti, Romania; Marin Chirciu, Colegiul Nat,ional Zinca Golescu,
Pites,ti, Romania; Ioan Viorel Codreanu, Satulung, Maramures, Romania; Daniel Văcaru, Pites,ti, Romania;
Ivko Dimitrić, Pennsylvania State University Fayette, PA, USA; Mihai Craciun, Mihail Sadoveanu Natio-
nal College, Pas,cani, Romania; Prodromos Fotiadis, Nikiforos High School, Drama, Greece; Nicuşor Zlota,
Traian Vuia Technical College, Focşani, Romania; Arkady Alt, San Jose, CA, USA.
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J550. Let a, b, c be real numbers with a, b ≤ c, such that abc = 1 and ab + bc + ca = 0. Find the greatest real
number k such that

∣a + b∣ ≥ k∣c∣.

Proposed by Ayashi Jain, Gurgaon, Haryana, India

Solution by Polyahedra, Polk State College, USA
Suppose a, b, c satisfy the conditions. if c < 0, then one of a, b is positive, thus greater than c.
So c > 0. Since ab = 1/c and a + b = −1/c2

1/c4 = (a + b)2 ≥ 4ab = 4/c.

Thus, ∣a + b∣/∣c∣ = 1/c3 ≥ 4. Equality holds if a = b = − 3
√

2 and c = 1/ 3
√

4. Therefore, the greatest k is 4.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Fred Frederickson, Utah Valley University, UT, USA;
Corneliu Mănescu-Avram, Ploieşti, Romania; Daniel Văcaru, Pites,ti, Romania; Ivko Dimitrić, Pennsylvania
State University Fayette, PA, USA; Todor Zaharinov, Sofia, Bulgaria; Nicuşor Zlota, Traian Vuia Technical
College, Focşani, Romania.
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J551. Let ABCD be a square and let M be a point on side CD. The lines AM and BD intersect in E. The
perpendicular in E on AM intersects BC in N , and AN intersects BD in F . Let K be the intersection
point of EN and FM . Prove that AK is perpendicular to MN .

Proposed by Mircea Becheanu, Canada

First solution by the author
With the notations from the statement, we prove the following

Lemma: Let ABCD be a square and M be an interior point on the side DC. The lines AM and BD
intersect in E. The perpendicular in E on AM intersects BC in N . Then ∠MAN = 45○.

Proof: The quadrilateralAENB is cyclic because∠NEA = ∠NBA = 90○. Then∠EAN = ∠EBN = 45○..
Back to the solution, we draw the perpendicular line from F to AN , to intersect DC in a point M ′, such
that ∠NAM ′ = 45○. This shows that M ≡M ′, hence MF ⊥ AN. Consider the triangle MAN . The point K
is its orthocenter, hence AK ⊥MN.

Second solution by Polyahedra, Polk State College, USA

By construction, A,E,N,B lie on the circle with diameter AN , so ∠MAN = ∠EBN = 45○ = ∠MDF .
Therefore, A,D,M,F lie on the circle with diameter AM . Hence, MF ⊥ AN , that is, K is the orthocenter
of △AMN , completing the proof.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Chistopher Lee, Singapore American School, Singapo-
re; Fred Frederickson, Utah Valley University, UT, USA; Anderson Torres, Brazil; Grant Blitz, Glenview, IL,
USA; Ernesto Delgado, Kristel Acuna, Leonardo Loria, Maricruz Vasquez, Alejandro Campos, Costa Rican
Olympiad Team; Corneliu Mănescu-Avram, Ploieşti, Romania; Ivko Dimitrić, Pennsylvania State University
Fayette, PA, USA; Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Prodromos Fotiadis, Nikiforos
High School, Drama, Greece.
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J552. Let x, y, z be positive real numbers with xy + yz + zx + xyz = 4. Prove that

2 (
√
x + 1 +

√
y + 1 +

√
z + 1) ≤ 3

√
(x + 1)(y + 1)(z + 1).

Proposed by Mihaela Berindeanu, Bucharest, România

First solution by Corneliu Mănescu-Avram, Ploieşti, Romania
Denote x + 1 = a2, y + 1 = b2, z + 1 = c2, where a, b, c are real numbers greater than 1. Then we have to prove
a2b2c2 = a2 + b2 + c2 + 2 implies 2(a + b + c) ≤ 3abc, that is

c2 =
a2 + b2 + c2

a2b2 − 1
implies c ≥

2(a + b)

3ab − 2
.

For s = a + b, p = ab, we have to prove that

s2 − 2p + 2

p2 − 1
≥ (

2s

3p − 2
)
2

,

which is equivalent to

s2 ≥
2(p − 1)(3p − 2)2

5p2 − 12p + 8
.

Since s2 ≥ 4p, it suffices to prove that

4p ≥
2(p − 1)(3p − 2)2

5p2 − 12p + 8
,

equivalent to (p + 1)(p − 2)2 ≥ 0, which is true. Equiality holds only for p = 2, that is, only for x = y = z = 1.
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Second solution by Polyahedra, Polk State College, USA
Let a = 1

x+2 , b =
1
y+2 , and c =

1
z+2 .Then

a + b + c =
xy + yz + zx + 4(x + y + z) + 12

xyz + 2(xy + yz + zx) + 4(x + y + z) + 8
= 1,

so x+1 = 1−a
a = b+c

a , y+1 = c+a
b , and z+1 = a+b

c . It is well known and easy to prove that (a+b+c)(ab+bc+ca) ≤
9
8(a + b)(b + c)(c + a). Therefore, by the Cauchy-Schwarz inequality,

2 (
√

(b + c)bc +
√

(c + a)ca +
√

(a + b)ab) ≤ 2
√

2(b + c + a)(bc + ca + ab)

≤ 3
√

(b + c)(c + a)(a + b).

Dividing both sides by
√
abc completes the proof.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Fred Frederickson, Utah Valley University, UT, USA;
Anderson Torres, Brazil; Lazar Ilic; Mihai Craciun, Mihail Sadoveanu National College, Pas,cani, Romania;
Zlota, Traian Vuia Technical College, Focşani, Romania; Arkady Alt, San Jose, CA, USA.
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Senior problems

S547. Let a and b be positive real numbers less than 2 such that ab = 2. Solve in real numbers the equation

4(x2 + ax + b)(x2 + bx + a) + a3 + b3 = 9.

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

Solution by the author
We have

x2 + ax + b = (x +
a

2
)
2

+
−∆1

4
,

where
−∆1

4
=

4b − a2

4
=

8 − a3

4a
> 0.

Similarly,

x2 + bx + a = (x +
b

2
)

2

+
−∆2

4
,

where
−∆2

4
=

4a − b2

4
=

8 − b3

4b
> 0. Then

4(x2 + ax + b)(x2 + bx + a) + a3 + b3 ≥
4(8 − a3)

4a
⋅
8 − b3

4b
=

64 − 8a3 − 8b3 + 8

8
+ a3 + b3 = 9,

with equality if and only if x +
a

2
= x +

b

2
= 0.

Hence the equation is solvable in real numbers if and only if a = b =
√

2, in which case the unique solution is

x = −

√
2

2
.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Dao Quang Anh, Everest School, Hoang Quoc Viet,
Ha Noi, Vietnam; Marie-Nicole Gras, Le Bourg d’Oisans, France.
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S548. Let a, b, c, d be nonnegative real numbers such that a + b + c + d = 10. Prove that

6a + 2ab + abc + abcd ≤ 96.

Proposed by An Zhenping, Xianyang Normal University, China

Solution by Brian Bradie, Christopher Newport University, Newport News, VA, USA
Let

f(a, b, c, d) = 6a + 2ab + abc + abcd and g(a, b, c, d) = a + b + c + d − 10.

The method of Lagrange multipliers yields the equations

λ = abc (1)

λ = ab + abd (2)

λ = 2a + ac + acd (3)

λ = 6 + 2b + bc + bcd (4)

Because b, c, and d are nonnegative, λ ≠ 0 by equation (4). This then implies that a, b, and c are not equal
to 0. Now, multiply equation (2) by c and combine with equation (1) to obtain d = c − 1. Next, substitute
d = c − 1 and λ = abc into equation (3) and solve for

b = c +
2

c
.

To determine a in terms of c, substitute d = c − 1, λ = abc, and b = c + 2
c into equation (4):

a =
6

c2 + 2
+ c +

2

c
.

The requirement that a + b + c + d = 10 then becomes

6

c2 + 2
+ 2

c2 + 2

c
+ 2c − 1 = 10

or
(c − 2)(4c3 − 3c2 + 6c − 4) = 0.

For d to be greater than or equal to 0, c must be greater than or equal to 1. With c > 1, 4c3 −3c2 +6c−4 > 0,
so c must be 2. Then a = 4, b = 3, and d = 1. The maximum value of f(a, b, c, d) is then

f(4,3,2,1) = 6(4) + 2(4)(3) + 4(3)(2) + 4(3)(2)(1) = 96;

that is,
6a + 2ab + abc + abcd ≤ 96.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Marie-Nicole Gras, Le Bourg d’Oisans, France;
Spyros Kallias, Volos, Greece.
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S549. Let a, b, c be positive real numbers such that a + b + c + abc = 4. Prove that

a
√
bc + b

√
ca + c

√
ab ≤

√
1 + 4a − a2 +

√
1 + 4b − b2 +

√
1 + 4c − c2 ≤ ab + bc + ca + 3

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution by Arkady Alt, San Jose, CA, USA
First, note that in fact holds inequality

a
√
bc + b

√
ca + c

√
ab + 3 ≤

√
1 + 4a − a2 +

√
1 + 4b − b2 +

√
1 + 4c − c2 ≤ ab + bc + ca + 3. (1)

Indeed, since 2
√
bc ≤ b + c = 4 − a − abc ⇐⇒ 2a

√
bc ≤ 4a − a2 − a2bc ⇐⇒

1 + 2a
√
bc + a2bc ≤ 1 + 4a − a2 ⇐⇒ 1 + a

√
bc ≤

√
1 + 4a − a2

and

a(
b + c

2
)

2

≥ abc = 4 − a − b − c = 4 − a −
2 (b + c)

2
⇐⇒ a(

b + c

2
)

2

+
2 (b + c)

2
≥ 4 − a ⇐⇒

a2 (
b + c

2
)

2

+ 2a ⋅
b + c

2
≥ 4a − a2 ⇐⇒ (

a (b + c)

2
+ 1)

2

≥ 4a − a2 + 1 ⇐⇒

a(b + c)

2
+ 1 ≥

√
1 + 4a − a2

then 1 + a
√
bc ≤

√
1 + 4a − a2 ≤

a (b + c)

2
+ 1 and, therefore,

∑
cyc

(1 + a
√
bc) ≤ ∑

cyc

√
1 + 4a − a2 ≤ ∑

cyc

(
a (b + c)

2
+ 1) ⇐⇒ (1).

Equalities in (1) occurs iff a = b = c = 1.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Arighna Pan, Nabadwip Vidyasagar College, India;
Prodromos Fotiadis, Nikiforos High School, Drama, Greece.
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S550. Let a, b, c be positive real numbers. Prove that
√
a2 + 2ab +

√
b2 + 2bc +

√
c2 + 2ca ≥

√
3ab +

√
3bc +

√
3ca

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by the author

Because u2 + v2 +w2 ≥
(u + v +w)2

3
and u2 + v2 +w2 ≥ uv + vw +wu, we have

∑
cyc

√
a2 + 2ab ≥ ∑

cyc

a +
√
ab +

√
ab

√
3

=

√
3

3
⋅ ∑
cyc

a +
2
√

3

3
⋅ ∑
cyc

√
ab ≥

3
√

3

3
⋅ ∑
cyc

√
ab = ∑

cyc

√
3ab,

as desired.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Arkady Alt, San Jose, CA, USA; Corneliu Mănescu-
Avram, Ploieşti, Romania; Prodromos Fotiadis, Nikiforos High School, Drama, Greece; Nicuşor Zlota, Traian
Vuia Technical College, Focşani, Romania; Marie-Nicole Gras, Le Bourg d’Oisans, France.
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S551. Let a, b, c be the side lengths of a triangle with inradius r and circumradius R. Prove that

R

r
+ (1 +

√
5) ≥ (3 +

√
5) ⋅

a2 + b2 + c2

ab + bc + ca

When does equality hold?

Proposed by Marius Stănean, Zalău, România

Solution by the author
Without loss of generality, we may assume that c = min{a, b, c}. Using the Ravi’s substitutions i.e. a = y + z,
b = z + x, c = x + y, x, y, z > 0, and the basic triangle properties, the inequality can be rewritten as follows

(x + y)(y + z)(z + x)

4xyz
≥ 2(3 +

√
5)

x2 + y2 + z2 + xy + yz + zx

x2 + y2 + z2 + 3(xy + yz + zx)
− 1 −

√
5,

or
(x + y)(y + z)(z + x) − 8xyz

4xyz
≥ (3 +

√
5)

x2 + y2 + z2 − xy − yz − zx

x2 + y2 + z2 + 3(xy + yz + zx)
,

that is
2z(x − y)2 + (x + y)(x − z)(y − z)

4xyz
≥ (3 +

√
5)

(x − y)2 + (x − z)(y − z)

x2 + y2 + z2 + 3(xy + yz + zx)
.

Since c = min{a, b, c} it follows that z = max{x, y, z} and from here, we have

x2 + y2 + z2 + 3(xy + yz + zx) ≥2xy + xy + 3xy + 6z
√
xy

≥12xy ≥ 2(3 +
√

5)xy.

It remains to show that

(x + y) (x2 + y2 + z2 + 3xy + 3yz + 3zx) ≥ 4(3 +
√

5)xyz,

that is
x3 + y3 + 4xy(x + y) + (x + y)z2 + 3z(x + y)2 ≥ 12xyz + 4

√
5xyz.

Using the AM-GM Inequality, it suffices to show that

2xy
√
xy + 8xy

√
xy + 2

√
xyz2 + 3z(x − y)2 ≥ 4

√
5xyz,

that is
2
√
xy (z −

√
5xy)

2
+ 3z(x − y)2 ≥ 0,

clearly true.
The equality holds when x = y = z which means a = b = c or when x = y, z =

√
5xy which means

a = b =
2c

√
5 − 1

(or any cyclic permutation). In other words, the equality holds for the equilateral triangle,

respectively the isosceles triangle in which A = B = 72○, C = 36○.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Ioan Viorel Codreanu, Satulung, Maramures, Ro-
mania; Arkady Alt, San Jose, CA, USA; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania;
Marie-Nicole Gras, Le Bourg d’Oisans, France.
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S552. Find all trianglesABC withAB = 8 for which there is an interior point P such that PB = 5, PC,AC,BC
is an arithmetic sequence with common difference 2 and ∠BPC = 2∠BAC.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Marie-Nicole Gras, Le Bourg d’Oisans, France

A

B C

P

x

x+2

x+4

5

8

Put x = PC, then AC = x + 2 and BC = x + 4; since BC +AC > AB, we deduce x > 1.

In △ABC, we obtain, by the cosine relation

cos(∠BAC) =
AB2 +AC2 −BC2

2AB ⋅AC
=

64 + (x + 2)2 − (x + 4)2

16(x + 2)
=

13 − x

4(x + 2)
⋅

In △PBC, we obtain, in the same manner

cos(∠BPC) =
PB2 + PC2 −BC2

2PB ⋅PC
=

25 + x2 − (x + 4)2

10x
=

9 − 8x

10x
⋅

Since, by assumption, we have∠BPC = 2∠BAC, we deduce from the relation cos(∠BPC) = 2 cos2(∠BAC)−

1, that x is a solution of the equation

9 − 8x

10x
= 2(

13 − x

4(x + 2)
)

2

− 1.

After cleaning the denominators, we obtain that x is a solution of the equation

x3 + 66x2 − 223x + 48 = (x − 3)(x2 + 69x − 16) = 0.

Polynomial x2 + 69x− 16 has 2 roots, x1 < 0 and x2 < 1; there are not suitable. It follows that the unique
solution is

x = 3, AB = 8, BC = 7, CA = 5.

We note that cos(∠BAC) =
64 + 25 − 49

80
=

1

2
, whence ∠BAC = 60o.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Taes Padhihary, Disha Delphi Public School, India;
Ivko Dimitrić, Pennsylvania State University Fayette, PA, USA; Fred Frederickson, Utah Valley University,
UT, USA; Corneliu Mănescu-Avram, Ploieşti, Romania; Telemachus Baltsavias, Kerameies Junior High
School, Kefallonia, Greece; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania.
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Undergraduate problems

U547. Let a, b, c, d be real numbers such that all solutions of the equation

x5 + ax4 + bx3 + cx2 + dx + 1022 = 0

are real numbers less than −1. Pove that a + c < b + d.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by the author
We have P (x) = x5 +ax4 + bx3 + cx2 + dx+ 1022 = (x−x1)....(x−x5) and x1....x5 = −1022. Moreover, because
all roots are less than −1 we have P (−1) > 0. We consider the inequalities x2k ≥ 4(−1 − xk) for k = 1,2, ...,5.
By multiplication we have:

x21 . . . x
2
5 ≥ 45(−1 − x1) . . . (−1 − x5) = 45P (−1) = 45(a − b + c − d + 1021) =

= 45(a − b + c − d) + 45 ⋅ 1021

Using the equality x1....x5 = −1022 the conclusion follows.
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U548. Evaluate

∫

π
2

0

dx

1 + tann x

where n is a positive integer.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

First solution by Henry Ricardo, Westchester Area Math Circle
Using the identity ∫

b
a f(a + b − x)dx = ∫

b
a f(x)dx, we have

I(n) = ∫
π/2

0

dx

1 + tann x
= ∫

π/2

0

cosn x

cosn x + sinn x
dx = ∫

π/2

0

sinn x

sinn x + cosn x
dx.

Adding the last two integrals, we see that 2I(n) = ∫
π/2
0 1dx = π/2, which yields I(n) = π/4 for any nonnegative

integer n.

Second solution by Henry Ricardo, Westchester Area Math Circle
Denoting the given integral by I(n), the substitution x↦ arctan t gives us

I(n) = ∫
∞

0

1

1 + tn
⋅

1

1 + t2
dt.

Then the substitution t↦ 1/t yields

I(n) = ∫
∞

0

1

1 + t−n
⋅

1

1 + t−2
⋅

1

t2
dt = ∫

∞

0

1

1 + t−n
⋅

1

1 + t2
dt.

Therefore,

2I(n) = ∫
∞

0

1

t2 + 1
(

1

1 + tn
+

1

1 + t−n
) dt = ∫

∞

0

dt

t2 + 1
=
π

2
,

which implies that I(n) = π/4 for every nonnegative integer n.

Also solved by Taes Padhihary, Disha Delphi Public School, India; Brian Bradie, Christopher Newport
University, Newport News, VA, USA; Corneliu Mănescu-Avram, Ploieşti, Romania; Marin Chirciu, Colegiul
Nat,ional Zinca Golescu, Pites,ti, Romania; Ivko Dimitrić, Pennsylvania State University Fayette, PA, USA;
Mihai Craciun, Mihail Sadoveanu National College, Pas,cani, Romania; Moubinool Omarjee, Paris, France;
Olimjon Jalilov, Tashkent, Uzbekistan; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania;
Arkady Alt, San Jose, CA, USA.
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U549. Evaluate
∞

∑
n=1

4n − 1

n2(2n − 1)2
.

Proposed by Toyesh Prakash Sharma, St.C.F. Andrews School, Agra, India

Solution by Brian Bradie, Christopher Newport University, Newport News, VA, USA
By partial fractions,

4n − 1

n2(2n − 1)2
=

4

(2n − 1)2
−

1

n2
.

Now,
∞

∑
n=1

1

n2
=
π2

6
,

so
∞

∑
n=1

1

(2n)2
=

1

4

∞

∑
n=1

1

n2
=
π2

24
and

∞

∑
n=1

1

(2n − 1)2
=

∞

∑
n=1

1

n2
−

∞

∑
n=1

1

(2n)2
=
π2

8
.

Thus,
∞

∑
n=1

4n − 1

n2(2n − 1)2
= 4(

π2

8
) −

π2

6
=
π2

3
.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Taes Padhihary, Disha Delphi Public School, India;
Ivko Dimitrić, Pennsylvania State University Fayette, PA, USA; Fred Frederickson, Utah Valley University,
UT, USA; Corneliu Mănescu-Avram, Ploieşti, Romania; Telemachus Baltsavias, Kerameies Junior High
School, Kefallonia, Greece; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania; Lazar Ilic;
Daniel Văcaru, Pites,ti, Romania; Mihai Craciun, Mihail Sadoveanu National College, Pas,cani, Romania;
Prodromos Fotiadis, Nikiforos High School, Drama, Greece; Henry Ricardo, Westchester Area Math Circle; Le
Hoang Bao, Tien Giang, Vietnam; Maiteyo Bhattacharjee, IACS, Kolkata, India; Olimjon Jalilov, Tashkent,
Uzbekistan; Arkady Alt, San Jose, CA, USA.
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U550. Let
fn(x) = (x2 − x + 1)(x4 − x2 + 1)(x8 − x4 + 1)⋯(x2

n

− x2
n−1

+ 1)

Prove that for ∣x∣ < 1
1

3
< lim
n→∞

fn(x) ≤
4

3
.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution by Brian Bradie, Christopher Newport University, Newport News, VA, USA
Let

fn(x) =
n

∏
j=1

(x2
j

− x2
j−1

+ 1) .

Then

(x2 + x + 1)fn(x) = (x2 + x + 1)(x2 − x + 1)
n

∏
j=2

(x2
j

− x2
j−1

+ 1)

= (x4 + x2 + 1)(x4 − x2 + 1)
n

∏
j=3

(x2
j

− x2
j−1

+ 1)

= (x8 + x4 + 1)(x8 − x4 + 1)
n

∏
j=4

(x2
j

− x2
j−1

+ 1)

= ⋯ = (x2
n

+ x2
n−1

+ 1) (x2
n

− x2
n−1

+ 1)

= x2
n+1

+ x2
n

+ 1.

For ∣x∣ < 1,
(x2 + x + 1) lim

n→∞
fn(x) = lim

n→∞
(x2

n+1

+ x2
n

+ 1) = 1.

Let
g(x) = lim

n→∞
fn(x) =

1

x2 + x + 1
.

Then
g′(x) = −

2x + 1

(x2 + x + 1)2
,

so g is increasing for −1 < x < −1/2 and is decreasing for −1/2 < x < 1. Moreover,

lim
x→−1+

g(x) = 1, g (−
1

2
) =

4

3
, and lim

x→1−
g(x) =

1

3
.

Thus, for ∣x∣ < 1,
1

3
< lim
n→∞

fn(x) ≤
4

3
.

Also solved by Corneliu Mănescu-Avram, Ploieşti, Romania; Telemachus Baltsavias, Kerameies Junior
High School, Kefallonia, Greece; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania; Henry Ri-
cardo, Westchester Area Math Circle; Mihai Craciun, Mihail Sadoveanu National College, Pas,cani, Romania;
Olimjon Jalilov, Tashkent, Uzbekistan; Arkady Alt, San Jose, CA, USA.
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U551. Let P (x) = a0 + a1x+ ⋅ ⋅ ⋅ + adx
d be a polynomial with positive coefficients such that a2k > 9ak−1ak+1, for

all k = 1, ..., d − 1. Prove that P (x) has d distinct real roots.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

Solution by the author
Let bk = 3k

2
ak. Then bk−1bk+1 = 32k

2+2ak−1ak+1 < 32k
2
a2k = b

2
k. That is

bk−1
bk

<
bk
bk+1

.

Now, consider the interval (
32mbm−1
bm

,
32mbm
bm+1

). Note that
32mbm−1
bm

=
3am−1
am

and
32mbm
bm+1

=
am

3am+1
.

We prove that for these intervals P (−x) is non-zero and has a sign of (−1)m. That is

P (−x)

(−x)m
= ⋯ + (−am−3x

−3
+ am−2x

−2
) + (−am−1x

−1
+ am − am+1x) + (am+2x

2
− am+3x

3
) +⋯

Note that −am−1x−1 + am − am+1x > am (−
1

3
+ 1 −

1

3
) > 0. Further,

(−am−2s−1x
−1−2s

+ am−2sx
−2s

) = am−2sx
−1−2s

(x −
am−2s−1
am−2s

) .

For x ∈ (
32mbm−1
bm

,
32mbm
bm+1

) , x −
am−2s−1
am−2s

is greater than
32mbm−1
bm

−
32m−4s−1bm−2s−1

bm−2s
> 0.

By the same argument am+2sx2s − am+2s+1x2s+1 = am+2s+1x2s (
am+2s
am+2s+1

− x) .

Now, for x ∈ (
32mbm−1
bm

,
32mbm
bm+1

) it follows that

am+2s
am+2s+1

− x >
am+2s
am+2s+1

−
32mbm
bm+1

= 32m+4s+1
bm+2s
bm+2s+1

−
32mbm
bm+1

> 0.

Hence, in each interval (−∞,−
ad−1
3ad

) , [−
3ad−2
ad−1

,
ad−2
3ad−1

] ,⋯,(−
3a0
a1

,0) we have one real root and we are

done.
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U552. Find all polynomials P (x) with real coefficients for which

P (P (a + b)) − 2ab(2P (a + b) − ab) ≥ P (a2) + P (b2) ≥ P (a2 + b2) − P (
√

2ab)

Proposed by Karthik Vedula, James S. Rickards High School, Tallahassee, FL, USA

Solution by the author
P (x) ≡ 0, cx2 (c ∈ [−1,0) ∪ {1})

Plugging in b = 0 gives

P (P (a)) ≥ P (a2) + P (0) ≥ P (a2) − P (0) Ô⇒ P (P (0)) ≥ 2P (0) ≥ 0

Setting b = −a gives
P (P (0)) − 4P (0)a2 + 2a4 ≥ 2P (a2)

Now, we do casework on the small degrees:

1. degP = 0 Ô⇒ P (x) = c. Substituting this in P (P (0)) ≥ 2P (0) ≥ 0 Ô⇒ c ≥ 2c ≥ 0 Ô⇒ c = 0. Note
P (x) = 0 does work, as the original inequality turns into 2a2b2 ≥ 0 ≥ 0.

2. degP = 1 Ô⇒ P (x) = cx + d. Substituting this into the original inequality gives

2a2b2 − 4ab(ca + cb + d) + c(ca + cb + d) + d ≥ c(a2 + b2) + 2d ≥ c(a2 − ab
√

2 + b2)

This implies 2d ≥ c(−ab
√

2). However, if c ≠ 0, then the RHS can attain any value, contradiction.
However, this implies c = 0, contradicting degP = 1.

3. degP = 2 Ô⇒ P (x) = cx2 + dx + e Ô⇒

P (P (a)) ≥ P (a2) + P (0) Ô⇒ c3a4 +O(a3) ≥ ca4 +O(a3) Ô⇒ c3 ≥ c

and for sufficiently large a we also have P (a2) ≤ a4 Ô⇒ c ≤ 1. Combining these two gives c = 1 or
0 > c ≥ −1. Now we have

P (a2) + P (b2) ≥ P (a2 + b2) − P (ab
√

2) Ô⇒

c(a4 + b4) + d(a2 + b2) + 2e ≥ c(a4 + b4 + 2a2b2) + d(a2 + b2) − c(2a2b2) − d(ab
√

2)

Ô⇒ 2e ≥ −d(ab
√

2) Ô⇒ d = 0, e ≥ 0

Now, we have P (x) = cx2 + e, where c ∈ [−1,0) ∪ {1} and e ≥ 0. Now, we have

P (P (0)) ≥ 2P (0) Ô⇒ ce2 + e ≥ 2e Ô⇒ ce2 ≥ e Ô⇒ e = 0 and/or c > 0 Ô⇒ e = 0 and/or c = 1

If c = 1, then P (x) = x2 + e, so

P (P (0)) − 4P (0)a2 + 2a4 ≥ 2P (a2) Ô⇒ (e2 + e) − 4ea2 + 2a4 ≥ 2a4 + 2e
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However, if e ≠ 0, then there exists a sufficiently large a which satisfies LHS < 2a4, contradiction. This
means that in any scenario, e = 0 and P (x) = cx2. Substituting this into the original inequality gives

c3(a + b)4 + 2a2b2 − 4cab(a + b)2 ≥ ca4 + cb4 Ô⇒ c3(a + b)4 + 2a2b2 ≥ c(a + b)4 + 2a2b2c

Ô⇒ (1 − c)((−c2 − c)(a + b)4 + 2a2b2) ≥ 0

Next, since c ∈ [−1,0) ∪ {1}, if c is in the negative interval, both factors are positive (as −c2 − c ≥ 0),
and if c = 1, then the LHS is clearly 0. Therefore, all values of c ∈ [−1,0) ∪ {1} work.

Now, suppose that degP ≥ 3. If the leading coefficient coefficient ` is positive, then there is a sufficiently
large a such that

2P (a2) ≥ 2`a6 ≥ 2a4 > P (P (0)) − 4P (0)a2 + 2a4

which is a contradiction. This implies ` < 0. We derived early on that 0 ≥ P (a2) − P (P (a)) + P (0). Taking
sufficiently large a and sufficiently negative a implies the leading coefficient of the RHS is negative and the
leading term has even degree (it is well-known that if degP is odd than P (x) can attain infinitely large and
infinitely small values).

However, note that the leading term of P (a2) is `a2degP and the leading term of P (P (a)) is `degP+1x(degP )
2
.

Since degP ≥ 3, then the second leading term, which has degree (degP )2, overrides the first leading term,
which has degree 2 degP . This means that the leading term of the RHS is −`degP+1x(degP )

2
. This means

that −`degP+1 is negative and (degP )2 is even. However, since ` < 0, the first part implies that degP + 1
is even, but degP is even by the second part, which is a contradiction. This means that degP cannot be
greater than 2, and the solutions we have found and verified are indeed the only ones.

Also solved by Fred Frederickson, Utah Valley University, UT, USA.
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Olympiad problems

O547. Let a, b, c be the side lengths of a triangle and let R and r be the circumradius and inradius, respectively.
Prove that:

(
a

b + c
)
2

+ (
b

c + a
)

2

+ (
c

a + b
)
2

+
17r

18R
≥

11

9
.

Proposed by Titu Andreescu, USA and Marius Stănean, România

Solution by the authors
Let s be the semiperimeter of the triangle ABC. Using ab + bc + ca = s2 + r2 + 4Rr, we deduce that

∑
cyc

a

b + c
=

2(s2 − r2 −Rr)

s2 + r2 + 2Rr
, ∑
cyc

ab

(a + c)(b + c)
=
s2 + r2 − 2Rr

s2 + r2 + 2Rr
.

The desired inequality is equivalent to

4(s2 − r2 −Rr)2

(s2 + r2 + 2Rr)2
−

2(s2 + r2 −Rr)

s2 + r2 + 2Rr
+

17r

18R
≥

11

9
.

Clearing the denominators and expanding, it becomes

(14R + 17r)s4 − 2(116R2r + 96Rr2 − 17r3)s2 + 128R3r2 + 124R2r3 + 82Rr4 + 17r5 ≥ 0,

or

(14 +
17r

R
)
s4

R4
− 2(

116r

R
+

96r2

R2
−

17r3

R3
)
s2

R2
+

128r2

R2
+

124r3

R3
+

82r4

R4
+

17r5

R5
≥ 0.

Hence, we need to prove that f ( s
2

R2 ) ≥ 0, where

f (
s2

R2
) = (14 +

17r

R
)
s4

R4
− 2(

116r

R
+

96r2

R2
−

17r3

R3
)
s2

R2
+

128r2

R2
+

124r3

R3
+

82r4

R4
+

17r5

R5
.

Because

s2 ≥ 16Rr − 5r2 >
116R2r + 96Rr2 − 17r3

14R + 17r
,

we deduce that f is an increasing function.
If we denote x2 = 1 − 2r

R ∈ [0,1), then by Blundon Inequality

s2

R2
≥ 2 + 5(1 − x2) −

(1 − x2)2

4
− 2x3 =

(1 − x)(x + 3)3

4
.

Hence, it suffices to prove that

f (
(1 − x)(x + 3)3

4
) ≥ 0,

that is

(45 − 17x2)(1 − x)2(x + 3)6

32
−

(1 − x)2(1 + x)(x + 3)3(639 − 158x2 − 17x4)

16

+
(1 − x2)2(1701 − 875x2 + 215x4 − 17x6)

32
≥ 0

or after some calculations,
4x2(1 − x)3(x + 2)2(4x + 11) ≥ 0,

which is clearly true. The equality holds when x = 0, so when the triangle is equilateral. Also solved by Titu

Zvonaru, Comănes,ti, Romania; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania; Arkady
Alt, San Jose, CA, USA; Marie-Nicole Gras, Le Bourg d’Oisans, France.
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O548. Letm,n, p ≥ 2 be positive integers. Find the number of n×pmatrices with entries in the set {1,2, . . . ,m}

such that every element of the matrix is distinct from its row and column neighbors.

Proposed by Mircea Becheanu, Canada

Remark by the author
This problem is a generalization of the problem S539, where p = 2. The problem S539 has a very simple
solution. We can choose the elements (a11a12) of the matrix in m(m − 1) ways. Let say, this line is (a, b).
The second line should be a pair (x, y) such that x /= y, x /= a and y /= b. Such a pair is choosen in m2−3m+3
ways. Repeating this for the third line, and so on, we can complete the matrix in m(m− 1)(m2 − 3m+ 3)n−1

ways.
This method can not be applied in general. The difficulty comes from the fact that after completing the

first two rows like in S539, but we can not extend the counting because we do not have information about the
number of choices for remaining elements. For example, we can not decide how many ways one can choose
a33 because we do not know if a32 and a23 are equal or not.

Ioan Tomescu pointed us that the required number is given by the chromatic polynomial P (G,m) of the
grid graph G(n × p) and this is a NP difficult problem.
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O549. Let ABC be a triangle. Prove that

cosA

sin2A
+

cosB

sin2B
+

cosC

sin2C
≥

7

4
(
R

r
+
r

R
) −

19

8
≥

1

16
(21

R

r
− 10) ≥

R

r
.

(An improvement of inequality S544.)

Proposed by Marius Stănean, Zalău, România

Solution by Marie-Nicole Gras, Le Bourg d’Oisans, France
We will use the well known relations

cosA =
b2 + c2 − a2

2bc
, a = 2R sinA, and abc = 4srR, where s =

a + b + c

2
⋅

It follows
cosA

sin2A
=

4R2 cosA

4R2 sin2A
=

4R2

a2
b2 + c2 − a2

2bc

=
b2 + c2 − a2

a

R

2sr
= (

b2 + c2 + a2

a
− 2a)

R

2sr
⋅

We deduce that

cosA

sin2A
+

cosB

sin2B
+

cosC

sin2C
≥

7

4
(
R

r
+
r

R
) −

19

8
⇐⇒

F ∶=
R

2sr
(
(a2 + b2 + c2)(ab + bc + ca)

abc
− 4s) −

7

4
(
R

r
+
r

R
) +

19

8
≥ 0. (1)

Let x = s − a, y = s − b and z = s − c be the Ravi coordinates. We substitute in F

a = y + z, b = z + x, c = x + y,
r

R
=

4xyz

(y + z)(z + x)(x + y)
⋅

Cleaning denominators and by a straightforward computation, we obtain that F ≥ 0 is equivalent to
G ≥ 0, with

G = ∑
sym

(4x6y + 5x5y2 − 9x4y3)

+ ∑
sym

(5x5yz + 15x4y2z + 9x3y3z − 29x3y2z2).

Applying Muirhead’s Inequality gives G ≥ 0, and we have proved (1).

To conclude, we compute

7

4
(
R

r
+
r

R
) −

19

8
−

21

16

R

r
+

5

8
=

7

16

R

r
+

7

4

r

R
−

7

4
=

7(R − 2r)2

16rR
≥ 0

and
1

16
(21

R

r
− 10) −

R

r
=

5

16

R

r
−

10

16
=

5(R − 2r)

16
≥ 0,

from Euler’s Inequality.

Also solved by Titu Zvonaru, Comănes,ti, Romania; Marin Chirciu, Colegiul Nat,ional Zinca Golescu,
Pites,ti, Romania; Arkady Alt, San Jose, CA, USA.
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O550. Let ABC be a triangle. Incircle with radius r touches BC at D. Point X lies inside angle BAC and
outside triangle and satisfies the following conditions:

BD ⋅BX = CD ⋅CX and tan
∠CXB

2
=

r

BC
.

Prove that X lies on the A-excircle.

Proposed by Dominik Burek, Krakow, Poland

Solution by Li Zhou, Polk State College, USA

Suppose I and J are the incenter and A-excenter of ABC, respectively. Let M be the midpoint of BC and
E be the reflection of D across M . Since BD = CE and BE = CD, we have CE/BE = CX/BX, thus
EX is the bisector of ∠BXC and intersects the circumcircle of BXC at the midpoint K of the arc BC.
Since ∠KBM = 1

2∠CXB, KM = r/2, so K is the midpoint of IE. Let rA be the A-exradius and L be the
orthogonal projection of J on EX. Then △IDE ∼ △ELJ , so IE/r = rA/EL. Therefore,

rrA = (s − b)(s − c) = CE ⋅BE =KE ⋅EX =
1

2
IE ⋅EX = rrA (

EX

2EL
) ,

that is, EL = LX. Hence, JX = JE = rA, completing the proof.
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O551. Let ABC be a triangle and let ∆ be its area. Prove that

a(s − a) cos
B −C

4
+ b(s − b) cos

C −A

4
+ c(s − c) cos

A −B

4
≥ 2

√
3∆

Proposed by An Zhenping, Xianyang Normal University, China

Solution by the author
The inequality to be proved is equivalent to

a
∆

s
cot

A

2
cos

B −C

4
+ b

∆

s
cot

B

2
cos

C −A

4
+ c

∆

s
cot

C

2
cos

A −B

4
≥ 2

√
3∆

or
a cot

A

2
cos

B −C

4
+ b cot

B

2
cos

C −A

4
+ c cot

C

2
cos

A −B

4
≥ 2

√
3s

sinA cot
A

2
cos

B −C

4
+ sinB cot

B

2
cos

C −A

4
+ sinC cot

C

2
cos

A −B

4
≥
√

3(sinA + sinB + sinC)

equivalent to

2 cos2
A

2
cos

B −C

4
+ 2 cos2

B

2
cos

C −A

4
+ 2 cos2

C

2
cos

A −B

4
≥
√

3(sinA + sinB + sinC)

Corner transformation: (A,B,C) → (π − 2A,π − 2B,π − 2C),

2 sin2A cos
B −C

2
+ 2 sin2B cos

C −A

2
+ 2 sin2C cos

A −B

2
≥
√

3(sin 2A + sin 2B + sin 2C)

or

2 sinA(sinB+sinC) sin
A

2
+2 sinB(sinC+sinA) sin

B

2
+2 sinC(sinA+sinB) sin

C

2
≥
√

3(sin 2A+sin 2B+sin 2C)

sinA(sinB + sinC) sin
A

2
+ sinB(sinC + sinA) sin

B

2
+ sinC(sinA + sinB) sin

C

2
≥ 2

√
3 sinA sinB sinC (1)

Inscribed circle substitution yields a = y + z, b = z + x, c = x + y(x, y, z ∈ R+)

sinA =
2
√
xyz(x + y + z)

(z + x)(x + y)
, sinB =

2
√
xyz(x + y + z)

(x + y)(y + z)
, sinC =

2
√
xyz(x + y + z)

(y + z)(z + x)

and

sin
A

2
=

√
yz

(z + x)(x + y)
, sin

B

2
=

√
zx

(x + y)(y + z)
, sin

C

2
=

√
xy

(y + z)(z + x)

Note that (1) can be rewritten as

y2 + z2 + 2(xy + yz + zx)
√
x(z + x)(x + y)

+
z2 + x2 + 2(xy + yz + zx)

√
y(x + y)(y + z)

+
x2 + y2 + 2(xy + yz + zx)

√
z(y + z)(z + x)

≥ 4
√

3(x + y + z) (2)
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Set x + y + z = 1 and transform inequality (2)

(1 − x)2 + 2x(1 − x)
√
x3 + x2(1 − x) + xyz

+
(1 − y)2 + 2y(1 − y)

√
y3 + y2(1 − y) + xyz

+
(1 − z)2 + 2z(1 − z)

√
z3 + z2(1 − z) + xyz

≥ 4
√

3.

Since yz ≤ (
y + z

2
)
2

=
1

4
(1 − x)2 all we have to prove is

(1 − x)2 + 2x(1 − x)
√

x3 + x2(1 − x) +
1

4
x(1 − x)2

+
(1 − y)2 + 2y(1 − y)

√

y3 + y2(1 − y) +
1

4
y(1 − y)2

+
(1 − z)2 + 2z(1 − z)

√

z3 + z2(1 − z) +
1

4
z(1 − z)2

≥ 4
√

3,

or
1 − x
√
x
+

1 − y
√
y
+

1 − z
√
z

≥ 2
√

3, (3)

because
1 − x
√
x
−

4 − 6x
√

3
=

2
√

3
√
x

(
√
x −

1
√

3
)

2

(
√
x +

√
3

2
) ≥ 0

Therefore,
1 − x
√
x

≥
4 − 6x
√

3
.

In the same way, two more formulae can be obtained, and it is easy to check that the superposition of
the three formulae is valid.

Also solved by Corneliu Mănescu-Avram, Ploieşti, Romania; Telemachus Baltsavias, Kerameies Junior
High School, Kefallonia, Greece; Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania.
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O552. Let ABC be a triangle with incenter I. The incircle is tangent to BC,CA,AB at points D,E,F ,
respectively. Denote by A1,B1,C1 the orthocenters of the triangles AEF,BFD,CDE, respectively.
(1) Prove that circle (DB1C1) passes through the foot of the altitude from A of triangle ABC.
(2) Prove that circles (DB1C1), (EC1A1), (FA1B1) have a common point and this point is the Feuer-
bach point of triangle ABC.

Proposed by Dong Luu, Hanoi National University of Education, Vietnam

Solution by Li Zhou, Polk State College, USA
(1) Let G be the foot of the altitude from A of △ABC. Since FD is the perpendicular bisector of B1I,

BB1

BI
= 1 −

B1I

BI
= 1 −

B1I

FI
⋅
FI

BI
= 1 − 2 sin2 B

2
= cosB =

BG

BA
,

so △BGB1 ∼ △BAI. Therefore, ∠BGB1 = ∠BAI = ∠DC1B1, that is, D,B1,G,C1 lie on a circle ωa.
(2) Suppose that ωa intersects AG at another point P . Then

∠DPG = ∠DB1G = ∠BDB1 −∠BGB1 = ∠BAG −∠BAI = ∠IAG,

so PD ∥ AI, thus AIDP is a parallelogram. Suppose that AI intersects BC at J . Let M be the midpoint
of BC and r be the inradius of ABC. We have

PG

ID
=
AG − r

r
=

2s

a
− 1 =

b + c

a
=
a/2 − b cosC

a/2 − (s − c)
=
GM

DM
,

so P, I,M are collinear. Hence, the midpoint of PD, the midpoint of IJ , and M are collinear. Now we
use the well-known properties of the inversion f centered at M and with radius MD. See T. Andreescu, S.
Korsky, & C. Pohoata, Lemmas in Olympiad Geometry, XYZ Press, 2016, 218–219. Draw another tangent
line from J to the incircle of ABC, with tangency point K. Then f(JK) is the nine-point circle of ABC,
and f(K) is the Feuerbach point U of ABC. Since f(G) = J and f(D) = D, we see that f(ωa) is the
circumcircle (DIJ). Therefore, U is on ωa.

(3) Comment. Let Ia be the A-excenter of ABC. The A-excircle of ABC is tangent to BC,CA,AB at
points D′,E′, F ′, respectively. Denote by B2 and C2 the orthocenters of the triangles BF ′D′ and CD′E′,
respectively. Then circle (D′B2C2) is tangent to ωa at G and passes through the A-Feuerbach point Ua
(where the nine-point circle tangent to the A-excircle of ABC). The proof is very similar.

Also solved by Corneliu Mănescu-Avram, Ploieşti, Romania.
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